KARSZTOS VÍZFOLYÁSOKBAN KELETKEZŐ KIVÁLÁSI FODROK MATEMATIKAI LEÍRÁSA LAMINÁRIS ÁRAMLÁS ESETÉN

PÉNTEK KÁLMÁN

Berzsenyi Dániel Főiskola, Matematika Tanszék 9700 Szombathely, Károlyi Gáspár tér 4. pentek@bdtf.hu

Abstract: We presents a mathematics model which describe the development of the calcareous sinter ripples if the current is laminar. We establish a formula, which can calculate distance of neighbouring calcareous sinter ripples. We analyse the relation which are the between the current and the development of the ripple.

1. Bevezetés

A túltelített karsztos vizekből az oldott anyagok kicsapódnak. A keletkező leggyakoribb és egyben legváltozatosabb formákban megjelenő kiválási anyag az édesvízi mészkő, áramló vizekből történő kiválás esetén ez a mésztufa.

A kicsapódás biogén és abiogén okokkal magyarázható. A vizes környezetben élő mohák fotoszintézisükkel csökkentik az áramló karsztos vízfolyásban az egyensúlyi széndioxid mennyiségét. Az egyensúlyi széndioxid mennyiségét csökkentheti, s így a túltelítettséget eredményezheti az áramlási viszonyok megváltozása, a víz egy részének elpárolgása, az áramlás turbulenciája miatti kiszellőzése, a hőmérséklet növekedése, valamint a nyomás csökkenése (*BALOGH* 1991, *VERESS* 2004).

A mésztufa legfontosabb formái a különböző felületeken keletkező bevonatok, gallérok, fodrok, kiválási foltok, fecskefészkek, változatos alakú és méretű gátak, lépcsők, mésztufa kúpok és a forráskúpok (*VERESS*, 2004).

Ebben a dolgozatban a karsztos vízfolyásokban megjelenő fodrokkal, lamináris áramlási viszonyok között történő képződésük egy lehetséges matematikai modelljével foglalkozunk. Fodrokat a Bükk-fürdői medencékben figyeltünk meg, amelyek itt széleskörűen elterjedt képződmények. E fodrokkal analóg képződményeknek tekintjük a patakmedrek mésztufagátjait. Modellünket fodrokra fejlesztettük ki, de azt gondoljuk, hogy gondolataink továbbfejlesztésével mésztufagátakra is alkalmazható lesz a jövőben. A kiválási fodrok néhány centiméter magasságú, keresztmetszetben szimmetrikus, vagy aszimmetrikus alakú, felülnézetben egyenes, vagy hajladozó formák, amelyek lokálisan mindig a pillanatnyi áramlás irányára merőlegesen helyezkednek el. Nagy sűrűségben fejlődnek ki a kicsiny, vagy közepes vízmélységek esetén. A tapasztalatok szerint a szimmetrikus fodrok kicsiny, az aszimmetrikus fodrok nagyobb áramlási sebesség mellett jönnek létre (*VERESS*, 2004).

A karsztos kiválási fodrok alakja és sajátos periodikus elrendeződése sok tekintetben emlékeztet a folyók medrében keletkező közismert homokfodrokra. A homokfodrok alakjának, keletkezésének és vándorlásának matematikai tárgyalásában alapvető fontosságúak *EXNER* (1920, 1927) dolgozatai. Karsztos modellünk kidolgozása során Exner ezen munkáiban felvázolt ötletét igyekeztünk a kiválási formák keletkezésének sajátos folyamataira alkalmazni.

Eredményeink kis sebességek mellett létrejövő lamináris áramlási viszonyokra vonatkoznak. A turbulens áramlási körülmények között végbemenő kiválási formák vizsgálatával a jövőben kívánunk foglalkozni.

2. A hidrodinamikai modell

A karsztba jutott víz a kőzetet oldva az oldás körülményeire jellemző szinten telítődik, s ez a telített oldat jelenik meg a karsztforrások felszínre bukkanó vizében. Itt a megváltozott fizikai paraméterek hatására megkezdődik a karsztvízből az egyensúlyi széndioxid kilépése.

Feltételezzük, hogy a kicsapódó anyag kolloidális méretű részecskék formájában jelenik meg a vízben. E részecskék rátapadhatnak a felületekre, de mozoghatnak is az áramlásban. Ez utóbbit bizonyítja, hogy a karsztos vízfolyások medrének üledékeiben a mész nem csupán bevonat, hanem szemcsék formájában is előfordul.

A karsztos vízfolyásban haladó kolloidális méretű kivált részecskéknek egyedül a hőmozgás hatására a teljes statisztikai rendezetlenségnek megfelelő egyenletes térbeli eloszlását tapasztalnánk. Egyedül a gravitációs erőtér hatására viszont statisztikailag olyan teljesen rendezett állapot jönne létre, amelyben a kivált részecskék mind a meder legalján helyezkednének el. A két, egyidejűleg fennálló, a hőmozgási rendezetlenséget előidéző és a nehézségi erőtér rendező hatásának eredményeként alakul ki a részecskék Boltzmann-féle eloszlása. Eszerint a meder alján a legnagyobb, míg felfelé haladva egyre kisebb a kivált kolloidális méretű részecskék koncentrációja. Az adott fizikai és kémiai paraméterek egyértelműen meghatározzák a kiváló részecskék koncentrációját a mederfenéktől számított magasság függvényében. A részecskék ezen eloszlását leülepedési, vagy szedimentációs egyensúlynak nevezzük (BUDÓ 1972a).

Ha a mederfenéken levő akadály, mint helyi egyenetlenség hatására a fentiekben vázolt módon kialakult szedimentációs egyensúly megbomlik, akkor ennek hatására vertikális irányú rezgés keletkezik, amely a horizontálisan mozgó folyadékban transzverzális hullámmozgásként jelentkezik, amely viszont a mederhez képest nem mozdul el.

A meder alján e hullámmozgás hullámhosszára jellemző távolságokban a hullámhegyek alatt, ahol lokálisan lecsökken az áramlás sebessége, sávokban rakódnak le a kivált kolloidális méretű részecskék, amelyek e sávokban megkötődnek és a mederfenékhez kérgeződnek. E periodikus, sávokban megjelenő bekérgeződések növekedve alkotják a kiválási fodrokat, amelyek további fejlődése vezethet el a keresztgátak képződéséhez.

3. A matematikai modell

Tekintsük egy olyan vízfolyást, amelynek vízhozama időben állandó, a meder aljzata sík, alakja a vizsgált szakaszon állandó. A karsztforrásban megjelenő vizet ideális inkompresszibilis folyadéknak tekintjük, amelynek áramlásáról feltesszük, hogy stacionárius és lamináris.

Modellünk leírásához rögzítsünk olyan Descartes-féle jobb sodrású koordinátarendszert, amelynek origója a meder alján helyezkedik el, *x*-tengelye a víz haladásának irányába, *z*-tengelye pedig felfelé mutat. Tegyük fel továbbá, hogy koordinátarendszerünk önmagával párhuzamosan a víz *v* áramlási segítségével halad, mintegy kísérve a vízrészecskék mozgását.

A kolloidális méretű mészanyag-szemcsék leülepedési egyensúlya a mederfenéktől mért z magasság függvényében a

(1)
$$\rho_m(z) = \rho_1 \cdot e^{-\alpha z} \quad (\alpha > 0)$$

összefüggésnek tesz eleget, ahol ρ_1 a mésztufa sűrűsége és $\rho_m(z)$ a pillanatnyi sűrűség a z magasságban (*BUDÓ* 1972a).

Szemeljünk ki a vízfolyás vizéből egy V térfogatú és ρ sűrűségű térfogatelemet, amely a mederfenék felett z magasságban halad. A térfogatelem szilárd és folyékony fázisból tevődik össze. Mivel a kiváló mészanyag sűrűsége a z magasság függvényében az (1) formulával írható le, így a V térfogatelem $0 < e^{-\alpha z} < 1$ -ed részét teszi ki a mésztufa szemcséinek szilárd fázisa, a maradék $0 < 1 - e^{-\alpha z} < 1$ -ed részt a folyadékfázist alkotó karsztvíz tölti ki. Ez utóbbit a z magasság függvényében a

(2)
$$\rho_{\nu}(z) = \rho_0 \left(1 - e^{-\alpha z} \right)$$

összefüggéssel írhatjuk le, ahol ρ_0 a víz sűrűsége. Ekkor a V térfogatelem teljes sűrűsége az (1) és a (2) felhasználásával a

(3)
$$\rho(z) = \rho_m(z) + \rho_v(z) = \rho_1 \cdot e^{-\alpha z} + \rho_0 (1 - e^{-\alpha z})$$

formulával írható le.

A mederfenéken elhelyezkedő kiemelkedő akadály hatására emelkedjék meg a V térfogatelem egy $\rho'(<\rho)$ sűrűségű és z'(>z) magasságba. Ekkor a térfogatelemre ható erők egyrészt a

$$(4) G = -\rho \cdot V \cdot g$$

súlyerő, másrészt az

(5)
$$F_f = \rho' \cdot V \cdot g$$

felhajtóerő. Így a dinamika alapegyenlete szerint

(6)
$$m \cdot \frac{d^2 z}{dt^2} = F_f + G = \rho' \cdot V \cdot g - \rho \cdot V \cdot g ,$$

amelyből a

(7)
$$m = \rho \cdot V$$

összefüggés felhasználásával

(8)
$$\rho \cdot V \cdot \frac{d^2 z}{dt^2} = (\rho' - \rho) \cdot V \cdot g,$$

azaz

(9)
$$\frac{d^2 z}{dt^2} = -\frac{\rho - \rho'}{\rho} \cdot g$$

formulával jellemezhető lefelé irányuló gyorsulással téríti visszafelé kiemelkedett térfogatelemünket a ható erők eredője a leülepedési egyensúlyban elfoglalt helyzete felé (*1.a. ábra*).

Teljesen hasonló okfejtéssel, ha a meder alján kiemelkedő akadály helyett egy bemélyedés található, akkor a V térfogatelem lezökkenve egy $\rho''(> \rho)$ sűrűségű és z''(< z) magasságú helyzetbe a

(10)
$$\frac{d^2 z}{dt^2} = -\frac{\rho - \rho''}{\rho} \cdot g$$

felfelé irányuló gyorsulással rendelkezik. E gyorsulással igyekszik visszafelé téríteni a ható erők eredője a besüllyedt térfogatelemünket a leülepedési egyensúlyban elfoglalt eredeti helyzete felé (*1.b. ábra*).

1. ábra: A vizsgált térfogatelem vertikális mozgása a mederben Fig. 1. Vertical movement of investigation volume element in the bed

Dinamikai szempontból a fentiekben vázolt, a szedimentációs egyensúlyt helyreállítani kívánó visszatérítő hatással magyarázható a transzverzális hullámok megjelenése.

Ezután a (9) egyenlet jobb oldalán szereplő relatív sűrűségváltozás mértékét határozzuk meg, ha a fentiekben vizsgált V térfogatelem a z magasságból a nála csak kis mértékben nagyobb $z' = z + \Delta z$ magasságba emelkedik. Ekkor egyszerű algebrai átalakításokkal

(11)
$$\rho - \rho' = [\rho_1 \cdot e^{-\alpha z} + \rho_0 (1 - e^{-\alpha z})] - [\rho_1 \cdot e^{-\alpha z'} + \rho_0 (1 - e^{-\alpha z'})] = (\rho_1 - \rho_0) \cdot (e^{-\alpha z} - e^{-\alpha z'}) = (\rho_1 - \rho_0) \cdot (1 - e^{-\alpha \Delta z})$$

adódik. Kicsiny Δz esetén $-\alpha \cdot \Delta z$ is kicsi, s ekkor jó közelítéssel érvényes a

(12)
$$e^{-\alpha \Delta z} \approx 1 - \alpha \Delta z$$

összefüggés, amelynek a (11) formulába történő behelyettesítésével

(13)
$$\rho - \rho' = (\rho_1 - \rho_0) \cdot e^{-\alpha z} \cdot \alpha \cdot \Delta z$$

adódik, ahonnan

(14)
$$\frac{\rho - \rho'}{\rho} = \frac{(\rho_1 - \rho_0) \cdot e^{-\alpha z} \cdot \alpha \cdot \Delta z}{\rho_1 \cdot e^{-\alpha z} + \rho_0 (1 - e^{-\alpha z})}$$

következik.

Alkalmazzuk most a (14) összefüggést a z = 0 fenékszintről a $z = \Delta z$ magasságba felemelkedő térfogatelemre, ekkor

(15)
$$\frac{\rho - \rho'}{\rho} = \frac{(\rho_1 - \rho_0) \cdot e^{-\alpha \cdot 0} \cdot \alpha \cdot z}{\rho_1 \cdot e^{-\alpha \cdot 0} + \rho_0 (1 - e^{-\alpha \cdot 0})} = \frac{\rho_1 - \rho_0}{\rho_1} \cdot \alpha \cdot z$$

adódik. A (9) differenciálegyenlet ezen kicsiny fenékszintről induló vertikális kitérítés esetére a

(16)
$$\frac{d^2 z}{dt^2} = -g \cdot \frac{\rho_1 - \rho_0}{\rho_1} \cdot \alpha \cdot z,$$

vagy tömörebben a

(17)
$$\frac{d^2 z}{dt^2} = -\omega^2 \cdot z$$

alakra hozható. A (17) összefüggés egy konstans együtthatós, homogén lineáris másodrendű differenciálegyenlet, amelynek általános megoldása a közismert

(18)
$$z = A \cdot \cos \omega t + \beta \cdot \sin \omega t$$

alakban adható meg. Kezdeti feltételeink t = 0 esetén z = 0 és $\frac{dz}{dt} = v_0$, amelynek eleget tevő megoldás a

(19)
$$z = \frac{v_0}{\sqrt{g \frac{\rho_1 - \rho_0}{\rho_1} \cdot \alpha}} \cdot \sin \sqrt{g \cdot \frac{\rho_1 - \rho_0}{\rho_1} \alpha} \cdot t$$

formában adható meg (BUDÓ 1972b, FRANK-MISES 1966, 1967).

A (19) egyenlet alapján a vertikális folyadékrezgés periódusideje a

(20)
$$\omega = \frac{2\pi}{T} = \sqrt{g \cdot \frac{\rho_1 - \rho_0}{\rho_1} \cdot \alpha}$$

felhasználásával

(21)
$$T = \frac{2\pi}{\sqrt{g \cdot \frac{\rho_1 - \rho_0}{\rho_1} \cdot \alpha}}$$

alakban írható fel.

EXNER (1927) áramlástani vizsgálatai szerint az (1) összefüggésben szereplő α mennyiség

(22)
$$\alpha = \frac{\beta}{\rho_0 \cdot v^2}$$

alakú. Ekkor (21) a

(23)
$$T = \frac{2\pi}{\sqrt{g \cdot \frac{\rho_1 - \rho_0}{\rho_1} \cdot \alpha}} = \frac{2\pi \cdot v}{\sqrt{g \cdot \frac{\rho_1 - \rho_0}{\rho_1 \rho_0} \cdot \beta}}$$

alakot ölti.

A mederhez rögzített megfigyelő számára a transzverzális rezgések tovahaladó transzverzális hullámként jelennek meg, amelynek λ hullámhosszára érvényes a

(24)
$$\lambda = v \cdot T = v \cdot \frac{2\pi \cdot v}{\sqrt{g \cdot \frac{\rho_1 - \rho_0}{\rho_1 \cdot \rho_0}\beta}} = 2\pi \cdot v^2 \sqrt{\frac{\rho_1 \rho_0}{g(\rho_1 - \rho_0)\beta}}$$

összefüggés. A (24) képlete alapján pedig a szomszédos fodrok d távolsága

2. ábra: A fodrok képződésének elvi vázlata Fig. 2. The theory of the development ripples

Látható, hogy a szomszédos fodrok távolsága a karsztvíz áramlási sebességének négyzetével arányos. Ha tehát az áramlás sebessége kétszere-

sére nő, akkor a fodrok távolsága megnégyszereződik, feltéve természetesen, hogy az áramlás lamináris jellege megmarad.

A (25) formula alkalmazhatóságához ismerni kell az áramlás v sebességét, a mésztufa ρ_1 , valamint a karsztvíz ρ_0 sűrűségét.

EXNER (1927) kvarchomokból kialakuló fodrok analóg jelenségét vizsgálva úgy találta, hogy $\beta = 0.128 \text{ kg} / m^2 s^2$. A (25) formula alkalmazhatóságához tapasztalati úton kalibrálni kell: d, v, ρ_1 és ρ_0 ismeretében mérésekkel meg kell határozni a β mennyiség értékét. E tapasztalati úton nyert β ismeretében v, ρ_1 és ρ_0 felhasználásával más áramlások vizsgálatánál a keresett *d* meghatározható.

I. táblázat Table I.

A d = d(v) függvény The d = d(v) function

v[m/s]	0,1	0,2	0,5	1
d[m]	0,08	0,32	2,01	8,05

A fentiekben bemutatott elméleti levezetésünket egy gyakorlati számítással illusztráljuk. *EXNER* (1927) méréseit felhasználva, ha $\rho_0 = 1 \ kg \ dm^3$ a karsztvíz sűrűsége, $\rho_1 = 1,9 \ kg \ dm^3$ a mésztufa sűrűsége, akkor a (25) formula alapján a szomszédos kiválási fodrok *d* távolságát az áramlás *v* sebességének függvényében az *I. táblázat* adatai tartalmazzák. A táblázat adatait felhasználva a d = d(v) függvényt a *3. ábra* mutatja be. A *II. táblázatban* viszont $v = 0,1 \ m/s$ áramlási sebesség mellett találhatjuk az áramló oldat ρ sűrűségét a fenéktől számított *z* magasság függvényében. E táblázat adatait felhasználva készült $\rho = \rho(z)$ függvényt a *4. ábrán* láthatjuk.

> II. táblázat Table II.

A $\rho = \rho(z)$ függvény v = 0,1 m/s áramlási sebességnél The $\rho = \rho(z)$ function v = 0,1 m/s at current velocity

Γ	Z[m]	0	0,01	0,02	0,05	0,1	0,2	0,4
	$\rho[kg/dm^3]$	1,90	1,79	1,69	1,47	1,25	1,07	1,01

4. Összegzés

Dolgozatunkban a karsztos vízfolyások medrében megjelenő kiválási fodrok matematikai modelljét vázoltuk fel lamináris áramlási viszonyok között. Meghatároztuk a fodrok legszembetűnőbb metrikus jellemzőjét, a szomszédos fodrok távolságát. Megvizsgáltuk, hogy e távolság hogyan függ az áramlás sebességétől, a túltelített oldatban a kolloidális méretű részecskék formájában megjelent mésztufa sűrűségétől, végül a szállító karsztvíz sűrűségétől. Fontos feladatunk a bemutatott elméleti formulák kalibrálása a gyakorlatban, az egyes paraméterek numerikus meghatározása, végül a modell vizsgálata és finomítása turbulens áramlások esetére is.

Köszönetnyilvánítás

Tisztelettel és szeretettel adózom édesapám, Péntek Kálmán (1923-1999) emlékének, aki engem gyermekként a természet szeretetére megtanított. Hálával és köszönettel tartozom neki, hogy F. Exner (1920, 1927) felhasznált dolgozatainak szakszerű fordításával és szövegértelmezésével nagyban hozzájárult jelen dolgozat megszületéséhez. Requiescat in pace...

IRODALOM

BALOGH K. (1991): Szedimentológia I. - Akadémiai Kiadó, Bp., p. 423
BUDÓ Á. (1972a): Kísérleti fizika I. - Tankönyvkiadó, Bp., p. 439.
BUDÓ Á. (1972b): Mechanika. - Tankönyvkiadó, Bp., p. 184.
EXNER, F. (1920): Zur Physik der Dünen. Sitzber. - Akad. Wiss. Wien Math. nat. KI. II. p. 929-952.
EXNER, F. (1927): Über Dünen und Sandwellen. - Geografiska Annaler 9. p. 81-99.
ERANK PH MISES R (1966, 1967): A mechanika és a fizika differencia.

FRANK, PH. – MISES, R. (1966, 1967): A mechanika és a fizika differenciál- és integrálegyenletei. - I.-II. Műszaki Könyvkiadó, Bp., p. 349.

VERESS M. (2004): A karszt – BDF Természetföldrajzi Tanszék, Szombathely, p. 215.