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.Abstract: .A. sort of karstic processes hoppens in circumstanou when the rocJc surf(U)t! uposed to solution is 
identical with the surface that determine.J the macroscopic shape of the rodc, i.e. the solution klks place directly on 
the surface of the rocJc that is not covered by ~oil or debris. Such prooes.Jes occur aJ the maleing of karren fo/ds, 
ril/enlcarren, rock-bowls as wel/ as aJ the malring of vertical e/ements (patho/es, vertical shafts). 11rough these 
forms seem to be substantial/y different, their development can be described with a universal differential equalion. 
11ris paper describes the setting up of the differential equalion system. 

Introduction 

A sort of karstic processes happens in círcumstances when the rock 
surface exposed to solution is identical with the surface that deterrnines the 
macroscopic shape of the rock, i.e. the solution ta.kes place directly on the 
surface of the rock that is not covered by soil or debris. Such processes occur 
at the making of karrenfelds, rillenkarren, rock-bowls as weil as at the 
making of vertical elements (potholes, vertical shafts). Though these forms 
seem to be substantiaily different, their development can be described with a 
universal differcntíal equation. 

This paper describes the setting up of the differential equation system. 
The equation system (due to its universal validity) is relatively complicated 
but in concrete cases it reduces naturally if the symmetries and other 
reducing conditions of the studi ed case are made use of. 

The setting up of such a differential equation system is justified 
because it unifies the efforts (virtuaHy very different from one another 
regarding the different nature of their specifi c aims) of others having studi ed 
the dissolution of the free limestone surface (VERESS, M-PÉNTEK, K 
1990, 1992, DUBLJANSZKIJ, J. V. 1989, JA.KUCS, L. 1971, 
SZUNYOGH, G. 1995 etc.) and the method offers new theoretical views on 
other phenomena that have not been yet studied. The basic novelty of the 
method is that it offers possibilii:ies for the theoretical modeling of various 
karst-forms, their origin and the explanation of their morphological 
properties. 
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The Model of the Karstification of Uncovered Limestone Surfaces 

A qv volume of rainfall falls on the limestone surface shown on Fi g. l. 
q v deterrnines the direction of the rainfall and the volume of water faliing at 
right angle at a unit surface at unit time. As a result water will flow on the 
rock surface with good approximation along the slope lines of the surface. 
(Only an approximation because if the borizontal projection of the slope line 
is a curve, the centrifuga! force will drive the water particles from the slope 
lines, they go astray in the bends.) The volume of water flowing on the 
surface is not originated solely in the rain, but it is boosted by volumes 
coming from other parts of the surface outside of the studi ed area. 

As the atmosphere contains 0.03% of carbon dioxide, rainwater 
becomes slightly acidic and dissolves limestone. While the rainwater flows 
on the rock surface its aggressive nature decreases due to the solution of 
limestone and also increases because of the addition of new rainwater still 
rich in carbonic acid content. As a result the aggressivity of the water-film 
will be different at the various points of the rock surface. For the denudation 
( corrosion) is the faster if the water is the more aggressive, the shape of the 
rock surface will be varied in space and time. 

Figun J. Detai/ offimulone swrface UJHMed to solution 
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The Determination of the Differential Equation of the Function that 
Describes the Shape of the Rock Surface 

At the modeling of the exposed limestone surface the listed actions 
will be talren to consideration: 

l) The volume of calcium carbonate departing from the limestone in a 
time unit (the rate of dissolution) will be directly proportional with the 
aggressivity of the water flowing above it, that is: wi th the difference of the 
de facto calcium carbonate concentration and that of the saturated solution. 

2) The calcium carbonate concentration of the water-film flowing on 
the surface will be increased by the dissolution of limestone but it is 
decreased by the increase of the solvent (rainfall on the surface ). 

3) The shift per time unit of an arbitrary point of the limestone surface 
( denudation) is directly proportional wi th the volume of rock that departs 
from that point in per time unit. With other words: where corrosion is 
quicker, quicker is the surface denudation. 

4) The direction of the flow velocity of the liquid-film (at the definite 
point) is determined by the slope direction of the surface, its magnitude by 
the thielmess and discharge of the liquid-film. 

5) The thielmess of the liquid-film (as for the laws of flow of free
surface viscous liquids) is basicaily determined by the volume of discharge 
and the gradient of the water tracks. 

In the camputation the listed quantities will be taken as well defined 
quantities 
- the velocity of the flow from neighboring areas at the fringe of the 
studied area; 
-the direction and volume of the rainfall; 
-parameters de:fining the velocity of limestone dissolution; 
-the saturation concentration of cal ci um carbonate of the water; 
- elemental hydraulic and petrologic parameters. 

In the camputation the listed quantities will be taken as undejined 
quantities 
-the formula that defines the limestone surface; 
- the direction and measure of the velocity of water flow at an arbitrary 
point of the limestone surface; 
-the concentration of calcium carbonate dissolved in water at any point of 
the limestone surface; 
-the thielmess of the fluid-film along the surface; 
- the direction and degree of the limestone slope (related to space and 
time). 
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All undefined quantities shall be regarrled as functions of the three 
spatial coordinates and time. 

The Means of Mathematical Definition of the Limestone Surface 

The formula that defines the limestone surface - to avoid the ruining 
of generality-will be sought in a coordinate-free form (that is: invariable 
regarding the types and position of coordinate systems) to enable the use of 
the most applicable coordínate system for the solution of the specific task. 
(SZUNYOGH, G. 1994) The vector pointing to an arbitrary point of the 
surface will be r and the equation to determine the surface is 

t =F(r) (l) 

where t is time and F(r) is to be understood as a vectorial-scalar function. 
E.g. in the case ofDescartian coordinates 

t= F(x,y,z) . (2) 

The (l) explicitly deterrnines the time w h en the surface "passes" the 
point marked by the r vector. Implicitly it shows that at the t time what x, y, 
z coordinates are on the surface. If the F(x,y,z) becomes known (as the 
solution of its differential equation) than figuring z from (2) z can be 
expressed explicitly as a function of the x and y spatial coordinates and t 
time. 

z = G(x,y,t). (3) 

The expression of the limestone surface is better as in (l) than in (3) 
because it does not emphasize either spatial coordinate "suppressing" the 
others as does (3) with z when it may happen that in certain cases x or y 
would be the variants more fitting to the solution. 

(l) is suitable to the mathematical description in the 

t=F(r,rp,z) (4) 

form using cylindrical or 

t = F(R,rp ,9 ) (5) 

form using spberical coordinates. 
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The V elocity of the Shift of the JJimestone Surface 

Let's regard the position of a t point and it's position in a commeneing 
t+ At time (Fig. 2) 

Figure 2. The shijling of thepointsof the rock surf ace during its 
dissolution 

t+ l'l.t 

A P point will be selected on the surface belonging to t time and a Q 
pint belonging to the t+ At time doing it in a way that the PQ section shall be 
at right angle to the tangent plan e of the !J.r = ór · n surface at P (or the PQ 
section shall be identical wi tb the nonnal of the surface ). It should point at 
the r P P, the r Q Q point. The !J.r vector pointing from P to Q 

(6) 

Consequently: 

M = L\r· n, (7) 

where 6r stands for the absolute value of fh e M vector. The velocity of fh e 
shifting of the surface will be: 

l
. l1r 

w= tm-. 
t.t~O L\t 

(8) 
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The w shall be expressed with its F(r) gradient. To achieve this (8) 

shall bereordered as follows: 

l. Ar l" l w= Jm-·n= tm'"An. 
61_.0 /J.t AHO ut 

(9) 

Ar 

As At converges zero point Q converges P beyond limits, so the 
!J.r = rQ- r p vector converges zero itself. So it can be expressed: 

l
. l 

w= Im '"An. 
t.r_.o ut 

Ar 

Aceording to the rules of limit determination: 

] . l 
tm----

Ar-.o At -
1
. !J.t ' 
tm -

Ar t.r->OM 

(unless the denominator of the right side is not zero) thus: 

W= A 0. 

l
. ut 
Jm-

Ar-.o Ar 

(10) 

(ll) 

(12) 

At can be expressed with the help F(r) formula. As point P is situated 

on the surface belonging to t time: 

F(rp) =t , 

point Q is situated on the surface described by t+Dt, thus 

F(rQ) =t+ !J.t. 

The difference of(14) and (13) 

!J.t = F(rQ)-F(rp). 

Using the equations (6) and (7) 

At =F(rp +M·n)-F(rp). 

Inserting At to the denominator of (12) 
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l 
w= D 

]. F(rp +~· D)-F(rp) 1m ---'---'-----'--------'~ 
t.r4o Ar 

(17) 

is resulted. It can be recognized that the expression in the denominator of 
(12) is nothing else but the derivative of F(r) in the n direction 

lim F(rp +~·D)-F(rp) = lJF. (18) 
M40 fl.r On 

It is well known that directional derivatives can be expressed by the 
gradients of the function to be derivated, so 

oF 
-=D·gradF. (19) on 

As the n nonnal of the surface is identical with the direction of the 
gradient: 

gradF 
D=.,.=---...,. 

JgradFJ. 
(20) 

Consequently 

oF= gradF. gradF = gradF · gradF = (gradF? 

o n lgrad FJ Jgrad Fl Jgrad Fl (21) 

Substituting (21) to (17) 

lgradFJ 
w= n. 

(gradFt 
(22) 

substituting (20) to the place of n and reducing it the next formula can be 
achieved for the w ve loci ty of the shift of the rock surface. 

gradF 
w=-=---

(gradF)2 
(23) 

The Density of the Material Flux of Limestone in to the Solution 

The density of the material flux of limestone is the quantity of 
limestone removed from a unit area of the limestone surface in unit time 
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(24) 

where A mK is the quantity of calcium carbonate dissolved in some At time 
from a M surface area. 

For the determination of A m K a minor M size area of the 
continuously denudating rock surface at t time shall be chosen. 

As the surface of the rock is dissolved at a- aceording to the earlier 
coding-w velocity, the denudation will be in a At time interval: 

Ar=w·n·Al (25) 

Figure 3. The presentation of the volume original/y occupied by 
limestone dissolved from the M surface elemeni du ring b time 

If M is minute enough (that is M -t O), than the surface of the rock 
can be approximated by a plan e within M -n and the value of w can be 
considered constant. Consequently the original volume of the limestone 
removed in the 6.1 time interval (see Fig. 3): 

AV= M·Ar, (26) 

or the mass of the removed rock: 

(27) 
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w here PK is the density of the limestone. 
Considering (24), (25) and (26) 

!lm = p ·M·w·n·M K K ' 
(28) 

this written into (24) the density of the material flux of calcium carbonate 
removed from the limestone during solution is receíved 

. p ·M·w·n·M qK = hm :...=K ____ _ 

6H0, ó.A-+0 /:,. t . M 
(29) 

Formula (29) after some reduction and limit determination can be 
given in this form: 

qK = W · D (30) 

Considering the form of w ~etermined by (22) the scalar product 
indicated in (30) will be put into the form: 

lgrad Fj 
w · n = n · n (31) 

(gradF )
2 

U sing that n· n = l, the density of the material flux of limestone will be: 

(32) 

The Calcium Carbonate Concentration of the Water Flowing on the 
Rock Surface 

The calcium carbonate concentration of the fluid-film should be 
detennined by such a function that depends only on two coordinates ( e.g. x 
and y) as the flow itself varies on a two dimensional surface. For example ín 
a "normally positioned" Descartian coordinate system the general form of 
this function would be 

c = c(x,y,t) , (33) 

that expresses that on a point of x, y coordinates on the surface of the 
limestone body in question the calcium carbonate concentration is exactly 
c(x,y,t). 

It is proposed to deviate however from this type of writing using the 
fact that there is an unambiguous relation between the z elevation and t time 
aceording to (3), so ( avoiding the ruining of generality) it can bedetermined 
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in the function of the three spatial coordinates c(x,y,z). The physical 
explanation of this would be that c(x,y,z) deterrnines the calcium carbonate 
concentration in a time when the rock surface that is continually in motion 
traverses the spatial point determined by the x,y,z coordinates. Naturally this 
time can be detennined as written in (2). The sought for function shall be 
t han 

c=c(x,y,z), while t= F(x, y, z). (34) 

The benefit of (34) is that it contains only coordinates and no time (at 
least not explicitly) offering a possibility to determine the calcium carbonate 
concentration of the solution similarly to (l) independently of the position 
or type of the coordinate system, that is: in iovariant form: 

c= c(r), white t=F(r). {35) 

Differing from (31), (35) is not a two- but a three spatial dimensional 
function. !ts explanation: c(r) deterrnines the concentration in the moment 

when the rock-surface traverses the point detennined by the r vector. It will 
be revealed in the followings that this type of writing enables the creation of 
much more general equations than its creation observing concentration like 
in (33). 

Relations between the concentration of calcium carbonate in the 
solution, the volume of rainfall and the density of the material flux of 
limestone shall be sought. The fact (according to observations) that the 
shifting of the limestone surface is siower by magnitudes than the velocity of 
the flow on it. (The rock dissolves 1-2 millimeters annually while the water 
make that distan ce in seconds.) 

It shall be studi ed, how the concentration of the water varies at various 
points of the rock surface. To this purpose an infinitesimany small material 
volume of A base area and h height shall be pointed out. (Fig. 4) 

The concentration of the solution (as concentration is defined): 

m 
C= --.K. 

v' (36) 

where mx is the mass of calcium carbonate in the pointed out V volume. 
When this volume is shifting along the surface, its concentration changes 
because on the one hand the mass of the dissolved calcium carbonatc in it 
changes on the other hand it is diluted by the rainfall recharge. Because the 
material volume shifts along with the water particles, its shift in At time is 

Af= V· flt. (37) 
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Figure 4. The positi on of the material volume eu t from the water 
flowing on the rock surface 

If the material volume was in the vicinity of the point detennined by 
the r position vector in the t moment then it will obviously be at the point 
r+ .1r after the passing of flt time. Aceording to (35) the concentration of 
the solution is different in the r+ Ar point as it was in point r, its value will 
change by 

ile= c( r+ Ar)- c( r) (38) 

Ac compared with the elapsed time At (knowing that aceording to (37) 
is Ar = v· At) the velocity of the change of the concentration is resulted: 

!!.c c( r+ v· !!.t)- c( r) 
-=~----O--~ 

At At 
(39) 

The value of v shall be the product of its absolute value and the 
evdirection of the flow: 

(40) 

th us 
Ac c(r+v·At · ev) - c(r) 
-=~---....:.....;_-"""'--'-

flt At 
(41) 

The numerator and denominator of (41) multiplied by v, thus: 
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Ac c(r+v·At·ev)-c(r) 
-=V· ·. 
At V·At 

(42) 

Obviously v· At = Ar, where Ar is the absolute value of Ar. As a 
consequence 

Ac c(r+Ar·ev)-c(r) 
-=V· . 
At Ar 

(43) 

If At~ O, than Ar converges to zero too, so the (43) formula is 
nothing else but the deviate of c in the ev direction 

lim Ac= lim{v· c(r+Ar·ev)-c(r)}= v· oc (44) 
61-+-0 M i.Y-+-0 Ar o ev 

The directional clerivatíve can be produced as the gradient of c 

oc 
--;-----=ev· gradc, (45) 

or 

u ev 

Ac 
- =v·e ·gradc. At v (46) 

On the other hand aceording to (40) v· ev =v, so finally the function: 

dc 
-=v·gradc 
d t 

(47) 

has been achieved for the change of the concentration. 
The derivative written in (47) indicates the so called material 

derivative, because it has been supposed that the material volume in question 
shifts together with the liquid. 

The change of the dissolved calcium carbonate concentration in the 
liquid-film can be produced from (36) as well: 
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dc_ d{mK} 
dt- dt v . (48) 

The denvation of the quotient on the right side executed: 

d {mK} _ l dmK mK dV 
dt v -v ·dl- V2 ·d(, (49) 

After reduction and insertion to (48) comes to this form 



dc l dmK c dV 
-= ·-·----·-
dt v dt v dl 

The individual factorsin (50) shall be detennined. 
Obviously 

V = A·h . 

(50) 

(51) 

The time clerivatíve of mK is equal to the change per unit time of the 
volume of calcium carbonate in the material volume, that change can be 
originated only in the dissolution of the limestone surface. 

N; from the limestone surface a qK quantity of rock material gets into 
the solution in a unit time, from an A surface A time that much in unit time, 
that is: 

(52) 

quantity will be dissolved. 
The time clerivatíve of V in aceordanec with the concept of the 

derivative is the c hang e of the volume of the water in unit time, that is, equal 
wi th the rainfall on A area in unit time. If the density of the volume flux is 
indicated with qvand the density of water with Pv, then the clerivatíve of V 

will be 

dV= lqvi·A·cosa 
dl Pv 

(53) 

%ere cosa expresses that from the point of view of the new water 
suppl y only the projection of A surface to the direction of the rainfall shall 
be considered, because the rain does not faU on the surface at rigbt angle but 
at ana angle. 

Indicating the direction of the rainfall with Dv, cosa can be written as 
a scalar product: 

cosa=n·nv, (54) 

where n is the nonnal of the rock surface. Inserting (54) to (53): 

dV lqvl 
-=-·A·D·Dv· (55) 
dt Pv 
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dV A 
- = -·qv ·D. 
dt Pv 

Inserting the (52) and (56) equations to (50): 

dc l c A 
-=-·A·qK--·-·qv·D. 
dt V V Pv 

W riting V from (51) to (57) and ex ecuting the possihle reductions: 

dc qK c 
-=----·qv·D. 
dt h Pv·h 

(56) 

(57) 

(58) 

Finally inserting (58) to the left side of (47) the below differential equation 
is resulted detennining the calcium carbonate concentration dissolved in the 
water: 

v·gradc = qK __ c_·qv·n. 
h Pv · h 

From (59) we can eliminate n with respect of(20): 

qK C gradF 
v·gradc =----·qv· · 

h Pv ·h jgradFj 

The Cbemical Equation of Dissolution 

(59) 

(60) 

Aceording to the most simple model of solution the dissolution is the 
quicker if the dirference between the saturation Ce and de facto c 
concentration is the bigger (DREYBROT, W. 1988). As a consequence the 
more calcium carbonate gets into the material volume showed in Figure 4 
the aggressivity of the solution is the bigger (that is: ce-c difference is the 
bigger), or the dissolution happens on a bigger A swface. In a formula: 

dmK = k·(c -c)· A 
dl e ' 

(61) 

where kis a constant characteristic to the velocity of dissolution. Calculating 
with equation (36) the 

(62) 

164 



equation is resulted. Using this one the 

qK = k ·(ce-c) (63) 

equation is gained for the relation of the concentration of the solution and 
the velocity of dissolution. 

This equation along with the consideration of (32) creates a direct 
relation between the concentration and the shape of the surface: 

l PK l= k·(ce-c). 
gradF 

(64) 

This paper does not describe the ways of the measurement of the Ce 

and k values, this has been worked out in other speleological studies in 
relatively good details. It has to be emphasized anyway that the k constant 
helps to involve the role of the mix.ing corrosion, the atmospheric 
temperature and carbon dioxide content, the increase of the partial pressure 
of carbon dioxide under extended snow covering. 

The Flow V elocity of Water in the Fluid-Film 

Figure 5. The actual and the equalízed velocity profile of the liquidfilm 

As the thin layer of water flowing on the rock surface behaves as a 
fluid with friction, its flow velocity gradually increases with the distance 
from the rock surface. The velocity of the flow is however meaningtess 
conceming the material-transport. The real flow can be substituted with a 
fictive flow with uniform velocity-profile (Fig. 5) and with a discharge 
identical with the real flow. 
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It is known from the theory of frictional fluids that the discharge of a B 
wide h deep, B slope canal is 

Pv· g·h3 ·B·sin{J 
Q = ' (65) 

3·1] 

where p v is the density of water, 17 is the coefficient of dynamic viscosity 

(SZUNYOGH, G. 1995). The linear velocity profileshall produce the same 
discharge, thus: 

Q =V·h·B . 

Figure 6. The re/otive positi on of the flow velecity of the li quid, the nonnal of 
the roclc surface and the vectors of gravitationa/ acceleration 

(66) 

Equalizing the (65) and (66) equations for the average flow velocity 
the follawing formula is resulted: 

Pv· g·h2 ·sin{J 
l'= (67) 

3·1] 

The sinB coefficient occurring in (67) hints that v canbetaken as the 
surface-di p oriented component of some vertical u vector ( see Figures 6 and 
7). 
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This particular u can be created by the help of g gravitational 
acceleration (g obviously vertical): 

u= Pv ·h2 ·g. (68) 
3· 17 

Aceording to the conditions stated at the heginning of this paper the 
direction of the flow is detennined by the slope direction of the surface. The 
gradient lines are drawn up by the plane defined by the nonnal of the rock 
surface and the gravitational acceleration and curve of intersection of this 
plane with the rock surface. Figure 7 shows the section of the surface of the 
limestone body along the above defined plane. 

Figure 7. The section of the limestone forrnation along the 
prone detennined by the norma! of the rock s::.~facc and the 

vector of the gravitational acee/eration 

It can be seen on Figure 7 that v is linear a combination of the u and n 
vectors 

v=u-(u·n)·n, (69) 

that has an absolute value (after Fi g. 7): 

· h2 l ·h2 
jvj = juj ·sin,B= Pv · gj·sin,B= Pv ·g· sin p 

3·17 3· 17 (70) 

It shows that the right side of (70) is really identical with the right side of 
(67), thus the guess has been proved that v can really be expressed with the 
help of a vertical u vector. 

Inserting the expression of u in (68) to (69) it is resulted that 
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Pv ·h2 (Pv ·h2 ) v= ·g- g·n ·n. 
3·1] 3·1] 

Reducing for the scalars: 

th us 

v= Pv ·h2 ·(g-(g·n)·n]. 
3·1] 

It shall be taken into account that 

gradF 
n= lgradFI, 

Pv ·h
2 

[ ( gradFJ gradF J 
v= 3·1J . g- g·lgradFI .lgradFI . 

By further reducing: 

p ·h
2 

[ gradF J v= v · g-(g·gradF)· 
2 

• 
3 ·1J (gradF) 

(71) 

(72) 

(73) 

(74) 

(75) 

It can be seen that the last component of the rights side (according to 
(23) is identical shift velocity of the surface: 

gradF 
w= , 

(gradF)
2 

(76) 

So finally the equation developed for the flow velocity of the fluid
film is: 

(77) 

The Thielmess of the Fluid-Film 

The thickness of the fluid film flowing on the rock surface can be 
determined using the law of conservation of mass. For this purpose a section 
of conduit, relatively narrow compared to its length will be pointed out. 
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Aceording to the law of conservation of mass the mass of water 
flowing into and out of the conduit within unit time will be identical. Let 
(see Fig. 8) the width of the conduit b, its length s and its height (that is 
obvious! y the sam e as the height of the fluid film) h at the point of entry and 
h 2 at the point of exit. The flow velocity shall be 

1
v 

1 
and v~ The r 

1 
positi on 

vector shall point at the entry point, r vector to the exit pomt. If the conduit 
is short enough the curvature of the flow line is negligible and the conduit 
can be approached by a straight line, thus 

Figure 8. The pasilion of the conduit necessary for the application of the law 
of mass conservation 

(78) 

There is gain originated from the recharge at one end of the conduit 
and on the top of it from the rainfall. Th us the mass of recharge water is: 

Q BE =pv·V1·h. ·b+qv ·D·S· . (79) 

Discharge at the other end is responsible for the loss at the other end of 
the conduit. The mass of the discharge: 
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QKI = Pv ·V z · ~ ·b · 

Aceording to the law of conservation of mass 

Q BE =QKI, 

that after equalizing (79) and (80) results 

v 2 • ~ - v1 ·h 1 = qv ·n 

s Pv 

(80) 

(81) 

(82) 

Approxi~ation is the more accurate s is the more short, because the 
flow lines can the better substituted by straight lines. 

v
1
, v

2
, h

1 
and h

2 
can be produced as the values of the v(r) and h(r) 

functions at r 
1 

and r 
2 

v1 = v(r1), (83) 

v2 = v(r2), (84) 

h1 = h(r1), (85) 

~ = h(r2)· (86) 

Inserting these expressions to (82) and observing that 

(87) 

it follows that 

(88) 
s s 

It can be noted that on the right sight of (88) (in case s ~O) the s
direction derivative ofproduct v(r)·h(r) appears, thus 

v . z. - v . h 8 { ( ( )} lim 2 
"

2 1 1 = -~ v r) · h r . 
s-tO S OS 

(89) 

The directional derivative in question can be produced as the gradient 
ofthe v(r) ·h(r) product: 
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~{v(r)·h(r)} =es· grad(v·h), os (90) 

where e stands for the s direction unit vector. Aceording to the above 
describ~ the direction of es is identicalv direction of the flow. 

The grad(v·h) expression shall be developed by the rules of gradient 

making (FRANK, Ph.-MIESES, R. 1967): 

es· grad (v ·h) =es · V · gradh +es ·h · gradv . (91) 

The first coefficient of the first term can be pooled like this: 

es ·v= v, (92) 

as e
8 

is the unit vector pointing in the direction of v. The second term can be 
shaped like this: 

í? e8 · h ( ) e8 ·h· gradv = es · h· gradvv- = í?· grad v· v = 
2vv2 

es ·h ( d. d. ) es · h d. =--· V · lVV+V· lVV =--·V · lVV. 
2·v v 

(93) 

As the water is an incompressible fluid, the divergence of its velocity 
field is zero, thus 

divv =O, (94) 

consequently 

es · grad(v·h) =es ·v· gradh. (95) 

Inserting (95) to (90) and that to (89) the following differential 
equation is produced for the thick:ness of the water-film. 

q · D v· gr ad h= _v_ (96) 
Pv 

It can be red in (96) that if rain falls on the rock, that is q v =t: O, then 
the thickness of the fluid-film increases in the direction of the slope lines 
because V· gradh ~O. The change of the fluid-film thick:ness can occur in the 
case of q v =O too because the flow lines of the flowing water can contract 
or spread out. 
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It can be deducted from (96) that if the direction of the rainfall and the 
normal of the rock surface are at a small angle than the q v ·n scalar product 
is small and the pace of thiekening of the fluid film is smaller. 

Summary 

The equation system of the dissolution of limestone surface uncovered 
by soil (free) is composed of the following equations: 

l. Relation betwcen the norma! of the rock surface and the function 
describing the shape of the surface: 

gradF 
n= igradFI; (97) 

2. Relation between the sinking velocity of the rock surface and the 
function describing the shape of the surface: 

gradF w- . 
- (gradF)2

' 
(98) 

3. Relation between the density of the material flux of the dissolved 
limestone and the sinking ve loci ty of the rock surface: 

(99) 

4. Relation between the calcium carbonatc concentration of the 
solution flowing on the surface, the density of the material flux of the 
dissolve limestone, the thickness of the fluid-film and rainfall: 

qK C 
v· gradc= h-Pv ·h ·qv ·n; (100) 

5. Relation between the calcium carbonate concentration of the 
solution flowing on the surface and the density of the material flux of the 
dissolved limestone: 

(101) 

6. Relation between the flow velocity, the thickness of the fluid-film 
and the spatial position of the rock surface (its normal): 

Pv·h
2 

[ ( ) ] v=-- · g- g·n ·n ; 
3. TJ 

(102) 
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7. Relation between the thielmess of the fluid-film, the flow velocity, 
the rainfall and the spatial positi on of the rock surface: 

di~ hv) = - qv · 
0 

• 

Pv 
(103) 

Unknown quantities in the equations: 
l. The t= F(x,y,z) function describing the rock surface; 
2. The normal of the rock surface (n); 
3. The sinking velocity of the rock surface (w); 
4. The mass of rock dissolved from a unit surface of limestonó in unit 

time (that is: the density of the material flux of the dissolved limestone) 
(qK); 

5. The calcium carbonate concentration of the solution flowing on the 
surface (c); 

6. The flow velocity of water in the fluid-film (v); 
7. The thickness of the fluid-film (h) 

The number of unknown quantities and equations. The (97)-(103) 
equation system consists of 3 vectorlal and 4 scalar equations. 3 vectorlal 
and 4 scalar values are sougbt for thus the number of equations and unknown 
quantities are equal. 

Boundary conditions. The thickness of the fluid-film shall be known at 
the boundary of the studied area where the water enters it and also the 
concentration of the entering water shall be known. The rest of the boundary 
conditions can be deríved in this course. 
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