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THE THEORETICAL-PHYSICAL STUDY OF THE PROCESS OF
KARREN DEVELOPMENT

GABOR SZUNYOGH
“Berzsenyi Daniel” College, Department of Physics
9700 Szombathely, Karolyi G. tér 4.

Abstract: the results of a theoretical-pkysical study of the process af karren development is presented in this paper.
Referring to former studies the equation system of the karstification of a sloping limestone terrain without pit
Jformation is written considering the hydrodynamic, chemical and morphological rules of the karstification
processes of a limesione rock surface. The differential geometric correlations that are necessary for the
mathematical description of rock surfaces that change their shape in ime are determined and the quantitative
relations of physicochemical processes influencing the changes of their parameters in time are described. The
basically sought for fimction will be the z(xy,1) one that determines the shape of the karstified ground surface, but
that demands the computation of the flow rate of the water flowing on the limestone surface as well as the calcium
carbonale concentration in the water and the thickness of the liquid film. The computer solution of the algerithm of
the derived partial differential equation is also presented.

Preliminaries

The Karst Research Group of the “Berzsenyi Déniel” College,
Department of Geography published the general equation system of the
karstification of an exposed limestone ground surface not covered by soil
(SZUNYOGH, G. 1994). The "ultimate target" of this equation system was

Fig. 1, a. the initial shape at the tgy moment of the studied limestone surface uncovered by soil, b: the shape of the
same limestone surface changed by karst corrosion in a later t moment
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(in the knowledge of the relevant physical, chemical and geological
principles as well as the necessary preliminary and boundary conditions) to
develop theoretically the mathematical determination of the future shape of a
limestone surface that has been known at the beginning thus to support the
principles of classic karst morphology (JAKUCS, L. 1971) in a
physicochemical way (Fig. 7). This mathematical modeling apparently does
not substitute but only adds to classic karst morphological studies enabling
the checking of hypotheses (based on physicochemical principles) that are
very slow processes that can not be studied by tests like the forecast of the
looks of a rocky surface after a number of centuries or millennia; the study
of karstification processes at conditions (hydrological, climatological etc.)
that aren't there to study at the present; the forecast and quantitative study of
global changes of the environment and such.

To achieve these a partial differential equation in several variables
was written of which the solution is an F(r) function that determines at what
t time will the rock surface ever changed by solution pass the point in space
that is characterized by the r position vector. The limestone surface is sought
for in the form of:

t=F(r) D

It can be derived (SZUNYOGH, G. 1995a) that the w velocity vector
of the displacement (denudation) [m/s] is

n
= —— 2
" ‘gradF!’ ‘ @

where n is the unit vector perpendicular at the rock surface (the normal of
the limestone surface)

It can be computed from the measure of denudation what volume of
limestone was removed from a unit surface area in unit time, thus the so
called g; mass-flux density of the limestone [kg/m’s] can be expressed:

G = =PV 1, 3)

where the p, is the density of the limestone [kg/m"].
Starting from the mass conservation principle it can be proved that
the

9 , €
- e 4

relation exists between mass-flux density of the removed limestone and the
concentration of calcium carbonate in the water, where v is the velocity of

v-gradc=

126




the water flow on the limestone surface [m/s], & is the thickness of the liquid
layer [m] and g, the rainfall that replenishes the solvent, or the volume of
rainfall on a unit area in unit time [kg/m’s].

The velocity of the water flow v is determined by the gravity and the
friction force (through the g gravity and n viscosity factor), that derived
from the Navier-Stokes formula (FRANK, Ph.—MIESES, R. 1967):

v———%[g -—(g-n)n]. (5)

The mass conservation principle is valid for the water alone too that
derived from the equation of continuity takes the form:

ﬁ(pvv - qu)dA =0 (6)

(4)

where A is a closed surface of a specified static volume in the water film, p,
the density of the water (kg/m").

The last equation of the dissolution reflects the chemical principles of
karst development expressing that the more limestone is turned into solution
as the water is more aggressive, that is, the more is the difference between
the maximal measure of solubility and the calcium carbonate that is actually
in the solution:

g, = k(c, - ). (M

where k is the constant of the reaction velocity of the dissolution [m/s]
(DREYBROT, W. 1988).

The (2)~(7) equation system is general in the sense that its validity is
independent of the choice of a coordinate system thus it can be flexibly fitted
to the system of coordinates that is most suitable to the geometry of the
modeled karstic phenomenon. This generality comes together with some
disadvantage: the published equations (in their original form) are not suitable
for the solution of any specific problem, but first they have to be adjusted to
some coordinate system fit to the specific task.

In the present paper this adjustment will be done to the Cartesian
coordinate system, because that's the one most fit to the mathematical
analysis of the karstic processes occurring on alpine limestone surfaces.
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The Equation System of the Dissolution of Open Limestone Surface
with the Application of Cartesian coordinate system

For the specification in space of the limestone surface such an
orthogonal coordinate system shall be applied that has horizontal x and y
axes and an upwards pointing z axis. (Fig. 2).

Fig. 2: The position of the coordinale system that describes the
location of the limestone surface af any moment

|

All the unknowns in the (2)-(7) equation are the functions of x and y |

space coordinates and ¢ time. The determination of these functions is aimed ’
at, the seeking of a

\

z-_—f(x,y,t) I8

function that is the mathematical specification of the limestone surface.
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The Normal Vector of the Limestone Surface in the Cartesian Coordinate
System

As the normal of the limestone surface occurs more than once in the
described equation aystem first n shall be determined as the derivative of the
z(x,y,t) function that determines the surface (Fig. 3). The gradient in the x
direction will be @, at y it will be §. For the components of the normal
vector: n,, n, and n,(Fig. 4) it can be written:

n, =-mtga, ®
n,=-ntgph, (10)
and n+ni+n =1. (11)

Fig. 3: The position of the so called normal vector that is at right
angle at the rock surface and its resolution to components
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The tga and tgf quantities will be equal with the gradient of the
limestone surface in the x and y directions so they can be expressed by the
partial derivatives of the function determining the rock surface:

tga:-é%-, (12)
ox
: |
tgf= (13)
Y
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Fig. 4: The ny, ny, and n, components of the normal veclor of the rock surface drawn in the S and S,
plane sections as showed in Fig. 3
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The solutions of the (9)}—(13) equations regarding n,, ny and n; are:

..
i o 5*62\2 : (14)
\/(5;) *(‘a;J !
o
n, = - - ” (15)

and

n, = ; (16)

The (14)—(16) equations enable the calculation of the components in
the Cartesian coordinate system of the unit vector perpendicular at the rock
surface in the knowledge of the equation of the surface.

The Velocity of the Denudation of the Surface

As a result of karst corrosion the rock surface is shifting, sinking very
slowly but continuously with a w velocity. The w is understood as the
thickness of the surface layer that is removed by solution in unit time. Its
direction is at right angle to the rock surface and it points to the interior of
the fresh limestone (Fig. 5).
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Fig. 5: The specification of the velocity vector of denudation

Writing the gradient expression in the formula of w to a coordinate
form the

1 _ 1
R CEOKE)

function is received that considering the rules of derivation of inverse
functions can be transformed:

(17)

oz

- o (18)
lgradFl o (a)?
(ﬂw) +(% +1
ox o
According to (2) for the determination of w (18) shall be multiplied

with the normal of the surface that considering (14)—(16) produces the
equations:
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W= ot Ox (19)
x 2 2 2
BRCE
ox %y
S
ot oy
wy: 2 2 > (20)
BECR
Ox .
and
oz
W, = o 21
’ (62]2 (azjz o
| |1 1]
ox/  \oy

The absolute value of the velocity will be

Iw| =t 1fwf +w§ +w?. (22)

that after the execution of the assigned operations take the form:

&
Iw] = a zalazz . 23)
\/['53 g+

The Mass-Flux Density of the Dissolving Rock

The expression (3) for the mass-flux density considering the (14)—
(15) and (20)—(22) expressions and after the scalar composition and
. ordering equation (3) gets into the form:

BN CECE

(24)
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It is apparent from equation (24) that when the rock is denuding

0z e e
g, =0 than — <0, thus the surface gets to ever lower elevation, it is sinking.
ot

The Chemical Equation of the Dissolution of Calcium Carbonate

The chemical equation of the dissolution expresses how much more
limestone transfers to solution in unit time (how much more is the mass-flux
density of the dissolving calcium carbonate) when the water is the more
aggressive, that is the difference between the actual calcium carbonate
content of the water and the total limestone solubility, is the bigger. This
relation is mathematically incorporated in (7) (VERESS, M.—PENTEK, K.
1990, 1992). Writing the mass-flux density defined by (24) to the left side a
relation is resulted between the derivatives of the function defining the rock
surface and the concentration of calcium carbonate in the solution.

o
~pp e = (¢, ). 25)
&) (3]

Expressin L from this an equation is resulted for the velocity of
pr g ot

sinking of the rock surface:

oz . c-c((a) (& ’
5= p;\jka) 4{5) i )

It can be seen in (26) that the more aggressive is the water, (the
difference between the equilibrium (c) and actual (c) calcium carbonate
concentration is the bigger) the quicker is the denudation of the rock. It can
be also seen that the gradient of the slope of the area (that is expressed by the

i and gz; after (12) and (13) plays a boosting role in the velocity of the

ox
sinking of the surface.

The algebraic sign of the —g—f shall be examined considering (26) than

can be done by the analysis of its constituents. The £, the first factor at the
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right side of the equation is a chemical constant, that is a positive number.
The density of the rock (p,) in the denominator is a positive number too.

The second factor in the numerator of (26) can not be negative,
because that would represent an oversaturated solution that is impossible in
the case of corrosion, that is:

¢ —e20. 27)
The last factor in (26) is the positive root computed from the sum of
squares:
2 2
(QZ—) +(@] +120. (28)
ox Y

It is clear from the above described that all values on the right side of
(26) are positive thus their products are positive as well. But because (26) is
completed with a (-) sign, it can be stated that

29)

that is, the rock surface can not get any higher as a result of karst corrosion,
it can only sink. (With the passing of time the elevation of the limestone
surface becomes ever lower.) This is virtually apparent but the mathematical
"reflection” of the well known principle proves the validity of the
deductions.

The Spatial Development of the Calcium Carbonate Content of the Water
Flowing on the Rock Surface

While the water flows on the surface it continually dissolves calcium
carbonate. The velocity of dissolution is different at the various points of the
rock surface as it is depending on numerous factors and first of all the
quantity of calcium carbonate that has been previously dissolved in the water
(c) and the velocity of the flow of the water film (#ig.6). This written in the
Cartesian coordinate system:

2 2 B oy (30)

ox* o’ h ph

where v, and v, are the x- and y components of the velocity vector of the
water, & is the thickness of the water film on the rock surface, q, is the
quantity of rainfall. Thus (30) creates a relation between the flow velocity of
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the water, its chemical constitution, the volume of the corroded rock and the
rainfall on the area.

Fig. 6: The spatial distribufion of calcium carbonate dissolved in the water
Sfilm flowing on the rock surface

The components of the q, vector in the Cartesian coordinate system
0

3

4 =4 0, (3 1)

where g, is a positive number. Its unit is: kg/m’s.

Substituting the form of ¢, determined in (7) to the first factor in the
right of (30) and q, as it is determined in (31) to the second factor.
Considering the (14)—(16) equations of the normal of the rock surface the
assigned scalar composition shall be executed. At length the

oc oc c—¢ ¢
| (32)

— V4 —V, =k —

ox oy h  ph
equation is resulted for the spatial distribution of dissolved calcium
carbonate.
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(32) tells that the aggressivity (c,.-c) of the water flowing on the rock
surface has a boosting effect on the concentration of calcium carbonate,
because the water dissolves the limestone as long as the rainfall reduces the
concentration (dilutes the solution) as it is written with a negative sign in the
right of (32).

The Velocity of the Water Flowing on the Rock Surface

The flow of the water is caused by gravity, it is slowed by friction.
The forces of inertia should be calculated with but in the relatively slowly
flowing water film the letter can be neglected beside the former two. (Fig.
7). Naturally the forces of inertia shall be calculated with at high velocity
flow in its full form on the left of the Navier-Stokes equation (SZUNYOGH,
G. 1995b).

Fig. 7: The flow lines of the water film that covers the rick surface

In the (5) formula written for the velocity the g vector of the gravity
occurs. As the gravity is apparently vertical and points Jownwards, it has
only a z-directed vector component, that is:
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g= { 0, (33)

where the absolute value of gravity is (10 m/s”). Executing the gn scalar
composition on the right side of (5) after the necessary ordering the
following equations can be achieved for the vector components of the flow
velocity of the water.

Oz ‘
. o |
W . i , (34)

(2 @)

- ,r;,,gh2 [%T +{%£)2

HEESE

The negative sign in the (34)—(36) formulas expresses that if the
surface seen in the direction of the x or y rises, the water flows
backwards, toward the origin, so:

(36)

z

if i) >0, thenv, <0,
ox
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or if iz >0, thenv, <0. (37)
ox

. . R 0. 0z .
The equations tell that if the surface is steep, so éi or éi is large,
X Y
the water flows with greater velocity. It is visible too that the flow velocity
of the water increases in a quadratic way with the flow thickness. It can be
deducted that the assumption that the flow in a thin water film is slow has
been proved.

The Equation of the Thickness of the Liquid Film

r For the determination of the thickness of the liquid film flowing on
the limestone surface the continuity equation that expresses the mass
conservation of the water can be applied in a way that for the closed 4
surface used for the application of equation (6) a minute tilted prism shall be
taken that includes the full m thickness of the flow and its base is Ax x Ay.
The integration in (6) performed and decreasing the values of Ax and Ay
beyond all limits (converging them to zero} then a wvariation of (6) is
received:

a(mvx) 4 5(mv)’) - q.n (6)
ox oy P

The m value expressing the depth of the water occurs on the left side
of the equation. As in the rest of the equations the h thickness of the water
layer is used (that is apparently less than the vertical depth of the flow on
sloping surfaces), it is practical to change to / to m in (6).
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Fig 8: The "infinitely small” el f of volume that contains the full depth of the water flowing on the
limestone surface, for the application of the mass conservation principle

Due to geometrical considerations the relation between A2 and m is

valid:
) (o2 ’

Substituting expression (38) to (6) and executing the assigned
derivations after a longish (but elemental) computation the following is
received:
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gga’z oz 0z & &z +_6£§2_z
h(avx av,,) oh  oh  _, dxox’ 6y6y6‘x+yhar5x@’ o' _

==+, —+V,—+WVh 2 2
ox oy e Ty az\? (32] oz [é{)
(a) S T (ax) &) v
= . (39)

Py (62)2 (62)2
— | +|—] +1
ox %y
(39) connects the differential geometric parameters (gradients in

various directions and curvatures) of the rock surface, the flow velocity of
the water and the thickness of the flow.

Summary

For the quantitative study of the processes of corrosion of the
limestone surface the v,(x,,¢) and v (x,y,7) components of the flow velocity
vector, the A(x,y,?) thickness of the 11qu1d film, the c(x,y,7) concentration of
dissolved calcium carbonate and the z=f{x,y,7) function determining the
limestone surface shall be determined. The listed five unknowns can be
derived by the listed five partial differential equations

g oz
p vgh &
W, = ‘; & (40)
" (@)
o) \y
0z
W "
y, = —EL5 % | (41)
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Py (azjz (azjz
—| +| =] +1
ox oy
oc oc c—-¢c €
L VN 1. i . 43
3 vx+ayvy P pth, (43)
2 2
zz.z-kce-c‘j(z) o2 s
ot Pr ox v/ -

The solution of (40)—(44) will be dealt with later.

The Computerized Possibilities for the Solution of the Equations of
Karst Corresion

Unfortunately the general solution for the (40)—(44) equations can
not be provided, only particular solutions exist that fit to the initial and
boundary conditions (DUBLJANSZKLJ, J. V. 1989, SZUNYOGH, G. 1995.c).
Apparently some schemes for the solution can be worked out that help in the
study of some individual types of tasks.

The(40)—(44) equation system is very befitting for computerized
solution because its equations are separable by the unknowns in them thus it
is sufficient to solve smaller ( three unknowns at most) equation systems.
The steps of a numerical solution are described in the followings.

Initial and Boundary Conditions

Be the function reflecting the rock surface at the beginning of the t,
period of study of the karst corrosion:

z(x, ¥, t) =2z, (x, y), if t=t, (45)
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- known. The H(x,y,?) thickness of the liquid film and the concentration of the
calcium carbonate in the solution C,(x,y,f) at the upper fringes of the sloping
rock surface (there where the water arrives to the study site) thus

h(x, y,1) = H,(x, y,1), if x,yel, t<t, (46)
and
c(x, ¥, t) = Cg(x, y,z‘), if x,yel, 1 <1, (47)

shall be known where I" is the set of the points of the upper limestone
surface fringe (Fig. 9).

Fig. 9: The initial and boundary conditions of the differential equation system of karst corrosien

The Development of the Karst Corrosion at the Beginning of the Denudation

%

= = &x, y), if t=1, (48)
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je))

e

(,;; = ¢§°)(x, y), if tet, (49)
2

‘Z; =£0(x%y); if t=t, (50)

&z .

6x8;/ =¢9(x,y), if =1y, (51)

o ,

—6% ={5(x2), if t=1,. (52)

The £P, &9, ¢, ¢ and ¢ functions in (48)-(52) are apparently

known. (The  index indicates that these derivatives are related to ¢, time).
The performance of the derivation (allowing to the computer program) shall
not be done by an analytic but a numerical way.

These functions substituted to the equations (40)}—(42) a differential
equation with three unknowns is gained for the initial v, és v, velocity and
h,thickness of the flow:

A8k &”
Voo =~ 2 2 ’ (53)
31 (&9 +(&) +1
pghy 5"
=— , 54
vy 377 (éaj)z - (gn))z 2 ( )
o D) T, O O LD
ho( ax + + VxO ax_ * vyO a‘y +vx{!h0 v ho

(d'_:"’)z +(c_;‘°’)2 3 0 (;“")’ 4»(&,‘,“'))2 f1

4, 1 (55)

= ;CJ_VJ(Q’JEO))z +(é'(y0))2 1 .

The value of the H(x,y,?) function of (46) at t=¢, substituted to (53) and
(54) the boundary conditions for velocity, ¥, and ¥, are gained:
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_pVgIIg(xsy:tO) ﬁgO)

Vio = , if x,yel and f=1,,
SN
(56)
or
H2(x,,t ©
L o (1.0:10) 3] if x,yel and f=tye

2 2

D FE

(57)

With these boundary conditions the (53}—(55) equations can be
solved with the method of finite differences (for the v (xy), v,(x.y) and

h,(x,y) variables) directly or (with the elimination of v ,, v ;) only for h,(x,y)
by the computer. The solution written to (43)

96 . 0
o § Py e
&y T k™

where the only unknown is the ¢, initial concentration of the solution.
Apparently (58) is a partial differential equation and its solution is a two
variable function (c,=c,(x,y)), but fortunately it is only a linear and simple
equation this way its solution on the computer does not raise difficulties. For
the solution considering (47) the ¢ (x,y)=C,(x..?), if +=t, boundary condition
serves as a supplement.

It can be determined at length what is the velocity of the sinking of 2
specific (arbitrary) point of x—y coordinates. Equation (44) for #=t¢,:

R s AR 9

The Shape of the Limestone Surface a Short time after the Initial Moment

GG G (58)

=0

In the knowledge of the velocity of sinking it can be determined what
function describes the shape of the rock surface after the passing of aAz

minute time interval in the next moment (z,=f,;+At ).
With the integration of (59):

i c,-c (&) (&)
z(x,y,1),., —z(x, 3,0),_, = | — k- J[—) +(—) +1dt. (60)
b =tsnhe= 1 -G 5
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——

z(x, y,1)|,_, means the shape of the rock surface at ¢, time and z(Xx, y, I)L_l
=0 =l

at r=t, time, that is:
z(x, ¥, t)!:=x9 = zo(x, y), if t=t,. (61)
z(x, ¥, t)im =z, (x, y), if t=t (62)

The first average value principle of the integration applied at the right
side of (60) particularly that it is valid for all continuous and integrable f{¢)
function in the ¢, és 7, interval, that:

Tf(t)dt . (’B - tA)'f(t.) i (63)

where about # “only that much is known that it is an internal point of the ¢,
t, interval (that is: £, <t" <1,). ¢, chosen for ¢, and ¢, for 1, (60) takes the

form:
i c,—c l(oz)" (o2 =]
z(x, y,t)| ” -z2(x,y, t)lm., = (rl - ro)(— k P (gx—) +(5;) +1 (64)
L =t
If the difference of #,and ¢,
At=(t,~1,) (65)

is sufficientléy small than ¢, 7, and#" are only "slightly" different so

writing!~ instead of ¢, into the argument of values at the left of (64) a
substantial fault has not been committed. The fault is the smaller as smalier ;
is Ar. '

Considering the (48), (49), (61), (62) and (65) signs for the shape of |
the rock surface in a particular moment will be ‘

2,(%,3) = z,(x, y)~k~‘i‘——;kﬁ\/(gj°’)2 +{¢O) +1-41 (66)

Vool %) V,(x.y), hy(x.y), ¢,(x,y) and %f—[ expresses all the necessary data to
h:ﬂ
characterize the denudation of the limestone surface at the =0 moment.

The Shape of the Limestone Surface in an Arbitrary Moment
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The relations derived in the foregoing retain their validity even when
not a t; but a t; moment is chosen for the initial moment only the indices
change, (1) shall be written replacing the "old" (0) indices and (2)-s replace
the "old" (1)-s.

¢, —~¢C 2 2
(0 ) = 56 ) =k~ *—J(;f”) +Hg) +1a0. (67)
k
(67) can be computed in the knowledge of (66).
Continuing the same order of ideas the shape of the rock surface can
be specified at any arbitrary £ moment.
1. The derivatives expressing the differential geometric parameters

shall be specified in the knowledge of z_(x,y,1):

E(x,y) = ixz" if  t=t, {t,=t,_ +&) (68)
B0l ) {?; i if t=t, (t,=t,,+A), (69)
£ e, . B
Uxy)= = =y (t,=1,,+A1), (70)
g A 9%, if o t=t, (r,=t,+4&) (71)
xy ’ ax@) L] n n n-1 9 At
&z

$M 3] = > £ =t (=, M), (72)

2. Substituting the substitute value of H (x,y,7) from (46) at =1, to (53) and
(54) the boundary conditions for velocity ¥, and ¥, will be:

) )
L Pt (xy,1) £ , if xyel,andi=t, (73)

xn 37 (50”))2+(§§,n))2+17

or

2 ‘ n)
" __pvells(x.y.0) & , if x,yel, if t=t,. (74)

yn y (én))z +(§§,”})2 i
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Considering these boundary conditions the (53)—(55) equation
system can be solved by computer for the /=, moment with the method of

finite differences regarding (v,,(x.y),v,,(x.y) and h,(x.y):
p,ghi(x,») il 75)
(@) +H{g7)

vm(x,y) = -
__pghi(xy) 5" -
Vyn(x,y) = 3n (é"))z +(€"})2 "y » (76)

ov. v, ) oh, - oh, - EED 4 g » EED 4 Eg _
h"( ]+ e Moy e (5»))2_'_(5"))24_1 P (én))2+(¢;n))2+]

q 1
=3 . (77)
2o (e +{gn) 41

Writing the solution to (43) a differential equation is received for

c(x,y,r,,) :

oc, v, + dc, = k =6 6 Q. 78)
ax 6)} hn pth
That substituted with
cn(x, y) =G (x, € t), if x,yelés t=t¢ (79)

boundary condition it can be solved by computer.
By the ideas followed in (60)

2,1 (5,) = 2,(x, )~ ki‘—‘i/;;(f’—}—’l\/(c,f”)z Her) +1-a0 - (80)

The procedure of the solution will be (Fig. 10):
1. The z,(x, y) shape of the rock surface is determined at £, moment.
2. In the knowledge of z,(x, y) the shape z,(x, y) of the rock surface is
determined z,(x, y) for the z, moment.
3. This procedure is continued for the series of £,, ¢, #, ... moments as long as
the z, (x, ) function belonging to the 7, moment is achieved. The sought for

solution is:
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z(x, ¥, t) = z,,(x, y), if t=t,. (78)

Fig. 10: Basic diagram of the development of a small limestone surface irregularity (e.g. a heel print) to a
karren trough for computer modeling

REFERENCES

DREYBROT, W. (1988): Processes in Karst Systems. Springer-Verlag.
283.p. Berlin, 1988

DUBLJANSZKIJ, J. V. (1989): A viztukor alatti gombfiilke-képz&dés
elméleti vizsgalata—Karszt és Barlang I-11. p.29-31

149



FRANK, Ph—MIESES, R. (1967): A mechanika és fizika differencidl- és
integralegyenletei. Miiszaki kényvkiado, Budapest, 1967

JAKUCS, L. (1971): A karsztok morfogenetikdja. Akadémiai kiado,
Budapest, 1971

SZUNYOGH, G. (1994): Szabad, talajjal nem borftott mészkéfelszin
karsztosodasanak altalanos egyenletrendszere—Karsztfejlodés 1. (Totes
Gebirge karrjai). Pauz kiad6, Celldomolk. p. 145-164

SZUNYOGH, G. (1995.a): A matematikai modellezés helye és szerepe a
karsztosodassal jar6 folyamatok leirdsaban — Karszt és Barlangkutatas. X.
évf. 1981-95. p. 251-269

SZUNYOGH, G. (1995.b): Karrcsatornak vizszallité képességének eiméleti
meghatdrozdsa — IV. Karsztologiai Szemindrium. Szombathely, 1995
SZUNYOGH, G. (1995.c): Mészkéfelszini alakzatok kialakuldsdnak fizikdja
— Studia Physica Savariesia. 1II. Szombathely, 1995. p. 9.1-9.11

VERESS, M.—PENTEK, K (1990): Kisérlet a karsztos felszinek
denudécidjinak kvantitativ lefrasara—Karszt és Barlang 1. p. 19-28

VERESS, M.—PENTEK, K. (1992): Felszini karsztos formik vizsgilata
matematikai mddszerekkel—Oktatdsi intézmények karszt és barlangkutaté
tevékenységének I1. orszdagos konferencidja, Szombathely. p.21-29

150

R




